Accessibility Tools

Skip to main content

Training Hard vs Training Smart


"People are incredibly innovative in their efforts to screw up training."

- Charlie Francis, Canadian Speed Coach

When it comes to sport training and many training systems, there are aspects that are poorly managed or misused in their application. One that is very common is the lack of understanding of physiology as it relates to bioenergetic training parameters and workload compatibility in sport.

Programs and coaches may frequently implement high lactate training loads into their program for a variety of reasons. Exhaustive shuttle runs, suicides, gassers, extended sets, and 'circuit' style workouts are all examples of lactic training. The problem is even though they may be performed with perceived 'maximal effort', in order to accomplish the prescribed work, individuals are training at a medium intensity. This level of intensity is too slow to develop speed. They teach muscles to behave slowly. Furthermore, the recovery requirements are high and thus cut into the ability to perform more intensive work that would directly improve speed and explosive strength.

There is not much justification for the frequent use of lactic training loads when the nature of most field/court based sports is alactic/aerobic with varying degrees of lactate influence. This is illustrated by the influence of bioenergetics on mitochondrial concentration in skeletal muscle. Mitochondria are responsible for energy production and oxidative potential. More mitochondria means greater energy supply and faster recovery. Mitochondrial concentration is elevated in skeletal muscle by anaerobic-alactic and aerobic training, while anaerobic-lactic training results in their destruction. Lactate threshold training must be appropriately prescribed and closely monitored.

This is just one example of why training loads and parameters must have compatibility to ensure the greatest transfer into sport performance improvement. The sports training world has fallen victim to a number of gimmicks in the name of profitability. Gimmicks such as high speed or anti-gravity treadmills, ladder drills, and exhaustive circuit-based training are examples of training that has very little to no carry over into athletic performance. Read more about this here.

For athletes and individuals who take their training and health seriously, your results are too important for someone to 'screw it up'.

What is DNS?

The GP Clinic specializes in DNS (Dynamic Neuromuscular Stabilization). Dr. Gallagher's extensive training and background in DNS therapy allows him to provide a level of care that is unique to the Pittsburgh area.

What is DNS?

DNS is a revolutionary European approach in the treatment of back pain and several neuro-muscular conditions. DNS therapy is based on the neuroplasticity of the central nervous system and targets the cause of pain/dysfunction rather than its manifestations. DNS therapy evokes ideal movement patterns by manual stimulation of developmental reflex zones. DNS exercises are used to improve neuromuscular control and the therapeutic benefits become significantly expanded from previous standards of rehabilitation. Any one from infants to adolescents, chronic pain patients to athletes can all benefit from DNS therapy.

Understanding the Role of Olympic Lifts in Training

The Olympic lifts (snatch, clean and jerk) and their variations are often used in the training and preparation of athletes that require explosive strength and power. Although Olympic lifts may be useful for teaching an athlete of low preparation how to rapidly generate force, overall they are not ideal for developing explosive strength for a number of reasons. Of primary importance is the increased risk of orthopedic injury associated with Olympic lifts, namely the overhead portions. So how does one efficiently develop power and explosive strength without undue risk of injury?

If the end goal is to improve explosive strength of the leg and hip musculature, as measured through vertical jump and standing long jump, coaches must select the most efficient and safest means. Charlie Francis placed sprints, jumps, and throws just as high as the Olympic lifts on his motor unit recruitment chart. Sprints, med ball throws, weighted/unweighted jumps all become wiser alternatives for power development as they require far less time to learn and impose less risk of injury.

This is not to say Olympic lifts serve no purpose. They certainly can be useful, but their positive effects are greatly misinterpreted by most coaches. For instance, some coaches utilize various volume and intensity schemes with the Olympic lifts to develop bioenergetic pathways used in acceleration phase of sprinting. Others will use it to develop tremendous starting strength. Keep in mind, there have been Olympic-level weightlifters with remarkable vertical jumps. Some have the ability to keep pace with or beat Olympic-level sprinters in the first 30m out of the blocks.

This sounds like pretty amazing stuff, right? Simply hit some cleans and snatches to get powerful and fast?

However, there's a big problem.

You aren’t as good at the lifts as an Olympic-level weightlifter. Remember, weightlifting is a sport. It is a skill and unless you have a lot of years under your belt, perfecting the lifts, you aren’t even remotely close to having the lifts make a significant impact on your athletic performance.

If you are going to get the most out of training the Olympic lifts, it absolutely matters that you are skilled from a technical viewpoint.

For example, outside of elite status Olympic weightlifters, very few lifters actually achieve full hip extension during the lifts. Meaning, they aren't fully developing powerful hip extension. Full, powerful hip extension is essential to developing explosive athletic qualities seen in sprinting, jumping, and throwing.

So, as an athlete, why would you perform a series of exercises that are ultimately going to take years of practice to learn while reaping little benefit from that effort? Sure, plenty of people think they have "learned" the lifts, but reality is they are far off the mark.

It takes time, a lot of time, to learn how to do the lifts properly. Achieving rapid, full hip extension is not an easy task and don't let anyone convince you otherwise. Nobody ever mastered the lifts in a matter of weeks.

So when it comes down to appropriately addressing power-speed development in athletes, it should become clear that there is potentially wasted time and energy in truly learning the Olympic lifts. Similar training results can be achieved with more basic exercises without the high technical demands.

Looking for ways to develop powerful hip extensions? Variations of sprints, jumps, and med ball throws get the job done faster with greater dynamic correspondence. Unless you are competing in weightlifting, the Olympic lifts don't offer much in dynamic correspondence to many athletes. Consider movements specific to your sport. Whether it is skating or shooting in hockey, throwing a baseball, covering a wide receiver, or kicking a soccer ball, there are very few specific connections with the Olympics lifts when you look at the movement patterns.

For an athlete, the Olympic lifts become very general in their ability to train resisted hip extension and reactivity.

As an athlete, your goal is to get better at your sport. Specificity in training matters. You could be wasting valuable time and energy resources on learning lifts that have little impact on your abilities to perform in competition.

Concluding Thoughts
I’m not here to bash on the Olympic lifts. They can serve a purpose in developing explosive hip extension and reactive/plyometric qualities. However, there are problems that exist with their use and implementation in the training programs of athletes. As mentioned previously, outside of competitive weightlifters, the Olympic lifts lack specificity. Specificity and dynamic correspondence are critical for any athlete. The Olympics lifts also impose greater structural risk and this could be considered unnecessary when developing athletes. The goal of athletic development is to maximize training results while minimizing structural risk. Consider variations of sprints, jumps, and throws. These alternatives are easier to implement and progress, thus providing both athletes and coaches the ability to master power-speed qualities specific to the athlete's sport form.