Accessibility Tools

Skip to main content

Periodization: Keep Athletes on Track for Success

Your nervous system has a nasty of habit of adapting.

Adaptation is the ultimate goal of training. Physical training is intended to create the stimulus needed for adaptation. Adaptation takes on a number looks, be it increased muscle mass, increased strength, improved speed and power outputs, or increased cardiovascular efficiency. The desired adaptations will always depend upon the needs of the athlete and how periodization influences each training phase or block.

Training phase? Training block? Periodization?

If these terms are unfamiliar to you, let us emphasize why they need to be important to you: Your nervous system gets bored of everything.
Our bodies are wired in such a way that unless we change some variable (volume, intensity, frequency, etc.) of the training stimulus, we will ultimately fail to continually adapt.

Periodization and the pursuit of adaptation is the foundation of scientific progression in physical training and athletic development. Great coaches will put you on a program long enough for you to adapting to it, then they introduce change.

Periodization is simply organization of training. One must have an expertise of how organization of training and exercise selection expertise impacts development. This is a prerequisite to training anyone, but unfortunately there are many under-qualified trainers and coaches out there that do not understand these concepts. Entire teams or groups of individuals should not all be performing the same training. This would assume the entire team or everyone in your group training class has the same deficiencies. Approaching training in this fashion is just ridiculous and deserves to be criticized. Periodization and training is an individualized process. The fitness industry and fad-based training has convinced the public that periodization and planning is not needed. Well, at least until training fails to produce meaningful results.

Understand there is no perfect program or system, just phases of training. Training is an ongoing process. Periodization and the planning of training is an ongoing process. This is why your trainer or coach must be putting some thought into your training, otherwise your success is always in jeopardy.

More related reading:

https://gallagherperformance.com/commonmistakesindevelopingyoungathletes/

Tips on Recovery and Restoration

Training Hard vs Training SmartThere are many components to consider when looking to promote proper recovery and restoration from training, be it from sport training or simply the goal of personal fitness. Similar to the considerations made in program design, one must be smart about the tools or tricks they use when it comes to nutrition, rest, and restoration techniques. In my personal experience, the overwhelming majority of individuals who train and compete on a regular basis commonly lack an understanding of recovery methods that are only going to help them optimize their training outcomes. They focus so much attention on their actual training, but fail to bring the same level of focus and attention to detail when it comes to nutrition or even proper sleep habits. When this occurs, training results are typically limited. There becomes a greater resistance to progress, leaving many in this situation feeling frustrated and confused. This is exactly why the understanding of rest and restoration must be passed on to the client or athlete. Yes, there is a difference between rest and restoration.

Basically, rest implies sleep or doing something restful, such as a nap or relaxing while watching the game. However, rest does not guarantee restoration, or the recovery and renewal of the body’s systems (i.e. cardiorespiratory, neuromuscular, endocrine, immune, etc.) from training demands. Not all systems recover in the same time frame and their restoration needs will be dictated by training volume and/or intensity. For the purposes of this article, we are going to discuss the application of recovery and restoration methods as they apply to recovery of the nervous system, specifically the autonomic nervous system.

Keep in mind, it is the current state of the autonomic nervous system that should dictate both training load and restoration methods. Meaning, it should be determined whether an individual is in a state of sympathetic or parasympathetic dominance. The ability to recognize this is crucial in decision making and avoiding inappropriate training loads or restoration methods, as these can push you down the wrong path. Ideally, restoration methods should be as individualized as the training process if your goal is optimal results. But, in general, here are some guidelines that will help you identify where you may fall on the sympathetic-parasympathetic spectrum and how to apply restoration methods to bring you back into an optimal state of recovery.

A) Parasympathetic Dominance (most typically experienced by endurance athletes)

  • Signs and Symptoms: chronic tiredness or heavy fatigue, low motivation to train, low resting heart rate, low blood pressure, low libido.
Restoration Methods: use SYMPATHETIC based recovery protocols
  1. Active Recovery Training: The goal is to increase blood flow to the peripheral musculature, speeding up processes of aerobic metabolism inherent in recovery. These activities should ideally be of low muscular and metabolic load, such as an easy bike, swim, or circuits of body-weight exercises.  Avoid high CNS demands, keeping active recovery sessions within 20-30 minutes.
  2. Intensive Deep Tissue Massage: Deep tissue massage will up-regulate the sympathetic nervous system through increased proprioceptive input to CNS, which will influence changes in the state of the autonomic nervous system as well as the myofascial system.
  3. Cold Water Immersion: May reduce perception of fatigue and soreness after training sessions by up regulating the sympathetic nervous system.  Repeat 2-5 minutes in cold water for 3-5 rounds.
  4. Sauna: Increased core temperature results in increased sympathetic response and speed of metabolic processes. It should be noted that the parasympathetic response increases following sauna use. In general, when looking at recommendations for the use of the sauna to promote recovery, the sauna should be between 180-200 degrees for an optimal response. There are a number of various sauna protocols to aid in recovery. In general, repeat 2-4 rounds of 5-10 minutes in the sauna, followed by a cool shower rinse.
B) Sympathetic Dominance (
most typically experience by power-speed athletes)
  • Signs and Symptoms: elevated resting heart rate, elevated blood pressure, poor sleep, mood changes such as being more irritable, suppressed appetite, restlessness, poor or declining performance, low libido.
Restoration Methods: use PARASYMPATHETIC based recovery protocols
  1. Active Recovery Training: Yes, this has similar application and can be used in either parasympathetic or sympathetic dominance. Follow the guidelines as previously mentioned.
  2. Relaxation-based Massage: Soft, gentle touch can generate a powerful parasympathetic response. Massage with the targeted goal of promoting relaxation will down-regulated the sympathetic nervous system. Again, this is achieved through proprioceptive input to CNS.
  3. Hot Tub: Hot water immersion promotes relaxation and increased parasympathetic response. Greatest benefit is achieved when water temperature is around 102 for 10-20 minutes.
  4. Deep Water Floating and/or Swimming: Not as commonly known or utilized as other restoration methods, this method is exactly what it sounds like, floating in deep water. Deep Water Floating’s benefits come from the proprioceptive changes due to the body being unloaded from gravity. A common recommendation is to alternate between 5-10 minutes of swimming and 5-10 minutes of floating while using a floatation device to ensure complete relaxation.
Concluding Thoughts
This is by no means a comprehensive discussion on recovery and restoration methods. Other methods such as naps, meditation, relaxation techniques, EMS (electro-muscular stimulation), and reduction of training volume and/or intensity can be implemented with great success as well. Remember to be strategic in the selection of your recovery methods, keeping in mind how they impact the various systems of the body. These techniques will not overcome poor training, nutritional, and sleep habits. They are intended to be an adjunct to already properly structured training and rest schedule, allowing you to optimize your readiness to train and compete.

More related reading:

https://gallagherperformance.com/why-poor-recovery-will-make-you-sick-sad-and-weak/

https://gallagherperformance.com/the-2-most-common-reasons-why-results-suffer/

https://gallagherperformance.com/resetting-bodys-function-post-injury/

How to Develop Physical Fitness

Recently, I was having a conversation with one of our clients about what it takes to be ready to compete in sport. The conversation mostly centered around athletics and how to be in the best "condition" possible. Specifically, this client was talking about certain people they know and hold in high regard as having a high level of physical fitness. All was going well until they said something very interesting.

In regards to someone they know, they said, "Man, are they fit. They are probably the most fit person I know."

When I asked them what makes that individual the "most fit" person they know, they just stared blankly back at me. There was no response and you could see the wheels churning away trying to figure out the answer.

Fitness is a craze nowadays. Women want to be fit. Men want to be fit. Athletes want to be fit. People want to be fit. Health clubs, personal trainers, smart phone apps, and infomercials want to sell you on becoming more fit. Slogans such as “Forging Elite Fitness” and titles such as “Fittest Man on Earth” or “Fittest Woman on Earth” make the concept of fitness very intriguing. Many people have come to believe fitness is a complex process. To most, the idea of “fitness” brings to mind someone who is muscular, lean, strong, and has stamina for days. This “idea” of fitness seems to be nothing but mere marketing and often leads people down the road of overcomplicating their exercise or training program.

So, that begs the questions, "What is fitness?"

Physical fitness is actually quite simple if we define fitness as “the quality of being suitable to fulfill a particular physical task”. If your task is to compete in the 100m dash, then your fitness levels must enable you to successfully compete in that event. If your task is to start in the NFL, then your fitness must enable you compete at your highest level possible week after week.

Developing Physical Fitness
Physical fitness is achieved during the process of physical preparation or how prepared you are for competition. The ultimate goal of physical preparation is to have each athlete at their best during competition and is accomplished via a systematic process to promote adaptations that raise levels of both fitness and preparedness. Fitness adaptations thus follow the SAID principle (Specific Adaptations to Imposed Demands). Meaning, if you want to gain muscle, get stronger, and be more explosive, you better be sprinting, jumping, throwing, and lifting weights to allow those specific adaptations to occur. The SAID principle also means that an athlete’s level of fitness should always be specific to their sporting demands.

Debating who is the most “fit” athlete or individual on the planet is a ridiculous conversation. How can someone say that an NHL defensemen who plays almost 30 minutes per game over an 82 game is more or less fit than an Olympic caliber decathlete? How is that Olympic decathlete more fit than a Navy SEAL? How is a Navy SEAL less fit than the “Fittest Man on Earth”? How is the winner of the Boston Marathon more fit than the World’s Strongest Man?

Do you see what I am getting at?

An athlete’s fitness levels (strength, power, stamina, energy system development, etc.) will always be specific to what is required by their primary sport form. Just because someone is the “Fittest Man on Earth” does not mean they will have the ability to withstand the demands of competing within another sport at elite levels. Personally, the “Fittest Man/Woman on Earth” title would be better renamed to “Fittest CrossFitter on Earth” because that’s all the title means. The notion that elite fitness in one event or sport is somehow superior to the fitness required in another is either arrogant or ignorant (possibly both).

Understanding Physical Fitness Adaptations
To better understand physical fitness and the specific adaptations that result from training, we must first consider the training system commonly used to achieve improvements in endurance, strength, and power. This training system is known as concurrent training. Concurrent training is defined as, “the simultaneous inclusion of strength training and endurance training within the same program.” Concurrent training may be a necessary means for some athletes and individuals. However, for most, the application of concurrent training is widely misunderstood and poorly organized in the pursuit of all things “fitness”. They want to improve endurance, so they do a lot of aerobic exercise. They may run, bike, or swim for hours each week. They also want to get lean and strong, so they lift weights 2-4 times per week. These are the people who train and train and train, yet fail to see significant improvements in any number of neuromuscular adaptations.

Aerobic and strength adaptations are very divergent. The human body is simply not capable of adapting appropriately to two very different training stimuli. You can go run for a long period of time or you can be explosive and strong from weight training. Now, I understand nobody wants to be both an elite marathon runner and Strongman. However, there are people who want high levels of aerobic capacity while also becoming muscular and strong at the same time. Unfortunately, many of these same people plateau quickly or fail to see significant improvements because concurrent training attenuates muscular growth, strength, and power gains. There is an interference effect created when one attempts to simultaneously improve both aerobic fitness and neuromuscular qualities such as strength and power. The training approach is doomed from the beginning if specificity and attention to detail in training organization does not enter the picture.

To understand why, we must then understand the competing long-term adaptations that occur from strength training and endurance training.

Competing Long-Term Adaptations 
1) Strength Training (short duration, high force output)

  • Neural Adaptations – synchronous firing, recruits large populations of motor units, rapid rates of force development, improve rate coding
  • Endocrine Adaptations – Growth Hormone (GH) and Testosterone release, anabolic environment, stimulation of satellite cell activation and muscle protein synthesis
2) Aerobic Training (long duration, low force output)
  • Neural Adaptations – asynchronous firing, recruits small populations of motor units, slow rates of force development
  • Endocrine Adaptations – impaired anabolic hormone signaling, elevated Cortisol and catabolic hormone production, inhibition of mammalian target of rapamyacin (mTOR), essentially shutting down the pathways for stimulating muscle protein synthesis
This means that regardless of whether you perform aerobic exercise and strength training in separate sessions or during the same exercise session, the results can be negative depending on your “fitness” goals or needs as an athlete.

Fitness is Specific
Physical fitness is thus specific to the end goal of physical preparation. The physical preparation of an American football player should be different than that of an MMA fighter. Football players do not need to have the "fitness" levels of MMA fighters. Each of these athletes must develop their physical fitness qualities to meet the demands of their sport. Consider that American football players must develop power-speed qualities that are essential to their success at high levels of competition. Some trainers and coaches feel that some of their football players need better aerobic fitness or conditioning, so they have them perform high volumes of gassers or long distance runs in the off-season. As said before, this can prove to be a huge mistake. Being "fit" for football has very little to do with how many gassers you can complete, how fast you can run three miles, or what your Fran time is.

The same is true for other power-speed athletes (hockey, baseball, lacrosse, sprinters, throwers, etc.) Senseless and poorly implemented aerobic conditioning will have negative impacts on the neuromuscular qualities needed for successful participation in these sports. These qualities are important to their “fitness” as an athlete. Sure, go ahead and perform endless miles of running or biking. Go on with your absurd amounts of circuit-based training. But when you rob these athletes of their ability to develop higher levels of strength, speed, and power, it should be no surprise as to why it happened. Aerobic fitness cannot be prioritized to the point that more important qualities (strength, speed, and power) suffer.

But, isn’t a decent aerobic conditioning base essential for these athletes as well?

Yes. However, there are more optimal ways to develop their aerobic energy systems to meet the demands of their sport. Don't make the mistake of assuming aerobic capacity is the same as being "fit". Aerobic energy system development will always be specific to the athlete's needs.  Similar to resistance training, aerobic development should be periodized and appropriately dosed to developed the specific energy system demands without impairing performance.

Conclusion
Fitness is not simply achieved by going nuts, but rather being productive in specific approaches to your sporting demands. If you are unsure of how to appropriately address your fitness goals or needs as an athlete, then first start with a knowledgeable coach who understands the complexities of physical preparation for sport and is able to guide you in the process. For some, the concept of fitness requires a bit of a “reality check”. Sure you may want it all. You want the elite level endurance, strength, speed, and power. But, often this is not realistic. Prioritize your fitness goals and address them accordingly in specific phases of training. This process requires patience.

Remember, fitness is a highly specific quality that is ultimately dependent upon the physical preparation process for your sport of participation. Understand your training must mirror your demands for sport. If training is not addressing your specific needs as an athlete, you are wasting your time. Don't let some general or poorly defined concept of "fitness" guide your training.

More related reading:

https://gallagherperformance.com/physical-preparation-vs-fitness/

https://gallagherperformance.com/the-truth-about-functional-exercise/

https://gallagherperformance.com/ultimate-runners-guide-to-injury-prevention/

Athletes Must Understand This to Be Successful

The emphasis of many athletic development programs is typically rooted in developing the physical qualities needed in the sport of competition. Physical qualities usually emphasized are endurance/work capacity, strength, body awareness, agility, quickness, speed, and explosive power. Improvements made in any of the previously mentioned physical qualities can certainly improve an athlete’s fitness and physical preparedness for competition. But great athletes are rarely defined by their level of fitness and how ‘in-shape’ they are. They are defined by their ability to play the game and perform the skills of the sport. Great coaches and trainers understand this, being able to take an athlete’s newly developed physical qualities and transfer them to into improved skill execution or technical mastery of sport related movements.

This is accomplished by specificity of training.

In order to ensure specificity of training, it is first necessary to determine the exact physical qualities an athlete is in greatest need of. Many coaches and trainers refer to this as ‘identifying the deficiency’. Once the deficiency is identified and an understanding is developed as to how the deficiency is limiting on-field performance, the deficiency can be trained appropriately.

To identify deficiencies, the majority of coaches and trainers utilize tests to determine an athlete’s level of strength, endurance, explosiveness, and even flexibility. While these tests are often necessary and provide quantitative information that will help assess how an athlete stacks up in comparison to others, what these tests fail to indicate is how efficiently an athlete can perform sport-specific skills or maneuvers.

Physical performance tests fail to indicate an athlete’s needs in relation to game performance. To ensure transfer of training into improved sport performance, identifying an athlete’s developmental needs must take into account an analysis of all components involved in successful competition. Often, this involves a complete biomechanical analysis of movements related to sport-skill execution.

For example, the deep squat is often a staple of many strength and conditioning programs. It can be a tremendous exercise for building hip strength and power and for a variety of other reasons. But when you examine the sport-related movements of many athletes, one can come to the determination that the need to deep squat is not a priority for many athletes. Consider hockey and basketball players. These sports require hip external rotation strength and power to execute sport-specific movements (skating, lateral cuts, change of direction, etc.). Rather than placing greater and greater emphasis on improving strength in the deep squat, these athletes will be better served in developing hip external rotation through other exercises which more closely mimic the external rotation demands of the hips in competition.

Again, great athletes are rarely the strongest or the fittest. There are studies that demonstrate Olympic-level athletes and World Record holders are not the strongest athletes (with the exception being in strength sports such as powerlifting and Olympic weightlifting). Athletes on the highest levels of performance do not lift the greatest amount of weight in commonly used exercises, such as the clean, squat, bench, or deadlift.

More commonly, athletes will fall in the midrange of strength numbers. What this is demonstrating is a ‘point of diminishing returns’. Many athletes reach a point at which increases in strength or other physical qualities do not always equate to improved sport performance.

Successful athletes must be able to execute sport skills with technical mastery and precision. Regardless if you are a hockey, football, soccer, lacrosse, baseball, tennis or track athlete, you need great acceleration, speed, agility (ability to change direction quickly), and the ability to jump high (which also requires explosive power). But arguably most important is the ability to perform all sport skills with mastery and precision of movement.

An athlete will never be successful if they do not have the ability to execute sport skills successfully. This is why technique must be closely analyzed and why the training of physical qualities must directly enhance the performance of sport-specific skill execution.

Analyzing an athlete’s sport skill technique and the demands of game play becomes a necessary first step to determine exactly what their training program should consist of. Often to correct and/or enhance technique, special strength exercises are implemented to develop the specific strength an athlete needs to execute movements more efficiently.

We addressed special strength exercises in this article. Special strength exercises are intended to replicate the exact neuromuscular pathways utilized in the execution of specific sport skills.

With proper analysis and identifying the ‘deficiency’ of the athlete, it enables the training program to have greater transfer into sport performance. The training program is continually adjusted as improvements in strength, speed, agility, and explosive power are integrated into technical mastery of skill execution.

Related Articles:

Training for Elite Athletes
Common Mistakes in Developing Young Athletes

2 Common Misconceptions In Endurance Training

What you need to know:

  • Many endurance athletes have exhausted their means of improvement with traditional training.
  • Training deficiencies, such as strength, can take your endurance capacity to new levels.
The Problem with Tradition
Similar to any group of competitive athletes, endurance athletes carry their own 'traditional' concepts when it comes to training and program design. Whether they are runners, bikers, swimmers, triathletes, or any combination in between, anyone new to an endurance sport realizes they must improve their aerobic capacity to sustain a specific pace over a specific distance. In order to do this, many people simply take to road and log mile after mile after mile.

After all, this is the accepted way of doing things, right? As a runner, if I have the goal to run a half marathon and I can only run 5 miles, obviously I need to put my time in to improve my running. But, what happens when simply just running or just biking fail to provide you the results you want? For many, this means they decide to start doing more. They think, "I must not be doing enough, so I must do more to improve."

In the endurance community, this type of thinking is the essence of traditional training. But is this training efficient in producing results? Are you wasting your time? What if the reason for your plateau in progress is not your lack of running/biking/endurance, but rather a deficiency, such as strength, that you may not have considered?

Approach enough endurance athletes about strength training and you will hear a lot of myths and misconceptions. However, talk to some of the best endurance athletes in the world and they will acknowledge the benefit strength training has in their performance. With that in mind, let's look at two of the most popular misconceptions.

Misconception #1 - Strength Training is Not Useful
This myth continues to stand the test of time despite the evidence that strength training is beneficial to athletes, regardless of sport. Even to this day, there are endurance sport experts that debate back and forth on whether or not endurance athletes need to lift weights.

Seriously? This is still happening even when we know strength training is a necessity for optimizing sport performance and health? Of special importance to endurance athletes, strength training has been shown to:
  • Maintain and/or promote the building of muscle mass. This is a huge benefit because endurance training negatively impacts muscle mass, meaning many athletes lose precious muscle.
  • Strengthen the endocrine and immune systems. Yet another big plus since chronic endurance training has a negative impact on both these systems.
  • Promote adequate bone density. The importance of this should speak for itself, but this will be of special importance to runners when you consider the risk of stress fracture.
When you take all that into consideration as well as the ability that strength training has to correct imbalances in the body and promote neuromuscular coordination, strength training should be an essential component to your training program.

Misconception #2 - Avoid Heavy Weights and Low Reps
Now that you have considered resistance training as part of your endurance routine, the next misconception to deal with is exactly how an endurance athlete should go about lifting weights. This misconception has its roots in the belief that endurance athletes need to perform high-repetition sets, usually 15-20 or more reps. The idea being high-reps will build muscle endurance, which will have the best carry over to their endurance sport. Again, this may work in the beginning, but as an athlete becomes more experienced and improves, training must adapt accordingly.

Keep in mind that many endurance athletes have exhausted their improvement with traditional training. The key to improvement now becomes identifying any deficiency. For endurance athletes deficient in strength related pathways, they can benefit from maximal strength training. Training for maximal strength requires specialized programming and relies on lifting heavy weights explosively for lower amounts of total reps.

To illustrate this concept, here is an example of a triathlete who utilized maximal strength training in her program with very successful results.

Case Study:
  • Triathlete trained is one of the head researchers for PowerBar, has a PhD in nutrition.
  • 8-10 lifts were performed per month in the 90-95% range of her 1RM (rep max)
  • Special exercises performed were box squats, special deadlifts, good mornings, and a similar variety of pressing movements for upper body.
  • No high repetition work was performed to avoid soreness and a high degree of effect on her traditional triathlon training.  Also, very little time is spent training in this manner.
  • She was amazed at the results this training was giving her. She said that she “could now look at any hill, use muscles she never had, and was able to dig deeper than ever before, and have a posture that was solid as stone,” which made her much less fatigued at the end of the run. She had shaved 1/2 hour off of her Iron man, and did about 4 hours less work per week of traditional training.  She had gained 2lbs of weight from the beginning as she trained this way for 8 months. Her bodyfat went down about 2%, and she no longer had back pain, neck pain, and less nagging training injuries and setbacks.
Importance of Maximal Strength to the Endurance Athlete
What’s the importance of maximal strength to the endurance athlete?  Let's consider two athletes, athlete A and athlete B.  They are both seasoned runners, but athlete A becomes much stronger, relatively speaking, while athlete B stays the same in strength.  Keeping body weight constant, it will take less effort for the stronger athlete to perform the same amount of work.  This increases endurance through strength conservation.

Clearly, the programming of specialized strength training can be beneficial. Also consider that the athlete in the case study above did almost 4 hours LESS training per week. This concept is known as training economy. Training economy is about achieving the greatest sport result with the less amount of time and energy spent in training. Thomas Kurz said it best in his book, Science of Sport Training:
"Training is efficient if the highest sport result is achieved with the least expense of time and energy".
To highlight this concept even further, research performed in Finland at the Research Institute for Olympic Sports found that replacing almost 1/3 of regular endurance training with explosive strength training not only improved strength and speed tests, but also improved aerobic capacity and running economy.

Take a moment to consider how much of your endurance training is unnecessary and whether your time may be better spent on training your deficiencies.

Final Words
The purpose of this article was to provide some insight into the importance of considering alternatives to traditional endurance training. Integrating resistance training to built specialized strength will only compliment your endurance capacity and provide you with a more efficient training program. To become a complete endurance athlete, addressing deficiencies appropriately can be the difference between a season of frustration and one of personal bests.

 


 

Stay Hydrated: How Much Water Do You Need?

What you need to know:

  • Adequate water intake or hydration is determined by many factors.
  • Common advice such as "Drink 8 cups of water a day" or "Drink half your body weight in ounces" are far too simplistic and may not provide you with the water you need.
Why Water is Essential to Health and Performance
"Dehydration of as little as 2% loss of body weight results in impaired physiological and performance responses."
As your body's principal chemical component, water makes up roughly 60 percent of your total body weight. Every system and cell in your body depends on water. Water is essential to normal human function.

Lack of water leads to dehydration, a state that occurs when you don't have enough water to allow your body to perform normal functions. A review published in the Journal of the American Dietetics Association states that "Dehydration of as little as 2% loss of body weight results in impaired physiological and performance responses."

To put that into perspective, this would equate to losing almost 3lbs of water for an individual who weighs 150lbs. That may seem like a lot of water to lose, assuming that one must exercise a lot or resort to extreme measures to lose that much water. But let's take a closer look and see just how easy it is to lose water without exercising.

According to the Guyton Textbook of Medical Physiology, the same 150lb individual will lose about 2.3L of water daily from urine, feces, sweat, and insensible water loss through the skin and breathing. 2.3L equals almost 5lbs of water loss per day from normal body function. This estimation does not factor in a warmer climate. Naturally, sweat rates increase in warmer weather, so this same individual could lose up to 3.3L of water a day.

It should be clear that becoming dehydrated is not a difficult task. There is a common misconception that dehydration only occurs in people that sweat a lot due to exercise or warmer weather. This couldn't be further from the truth. Normal bodily functions can lead to dehydration if water intake is not addressed appropriately.

The importance of adequate water intake has important health considerations as well. There are studies that have demonstrated individuals who stay well hydrated are less likely to experience:
  • Cancers of the breast, colon, and urinary tract
  • Urinary stone disease
  • Mitral valve prolapse
  • Childhood and adolescent obesity
Meeting Your Basic Daily Needs
In sedentary individuals, it appears that men require about 12 cups of water per day and women require about 9 cups of water per day. Whole foods are estimated to provide 4 cups of that daily water total. Another 1 cup of that daily water recommendation comes from 'metabolic water' or water that your body makes from metabolic processes, thus making this water you don't have to worry about consuming.

So for the sedentary individual, they will require about 7 cups of water/fluid per day since the remaining 5 cups of water will come from food and normal metabolic function. This is assuming that one is eating enough to meet their calorie needs.

It's important that any fluid you count toward your daily total is non-caffeinated or non-alcoholic. Caffeine and alcohol raise water needs in the body. If you consume either of these, you will need more water.

Water Needs in Response to Physical Activity
As for athletes, there is strong evidence in the research showing that dehydration will have major impacts on endurance, strength, intensity, and mood. When it comes to athletes, little research has been done to determine exactly how much water intake is needed to prevent dehydration. This likely explains the wide variety of answers one can potentially be given when attempting to figure out how much water they need to rehydrate. The honest answer is, "It depends." The reality is, there are a number of factors that play into understanding how much fluid intake an athletes needs to appropriately rehydrate.

Athletes or active individuals will generally require greater amounts of water due to increased muscle mass, metabolic activity, and sweat rates. So how much water will an athlete require? For starters, we can make a safe assumption that athletes eat more food during the day than the average person and that they have a higher metabolic rate. With this in mind, they will be getting more water from food sources and metabolic function. Depending on the climate an athlete exercises in, daily water intake may need to increase to an additional 2-4L (8-16 cups) on training days. Water intake must be based on factors such as activity level, body mass, sweat rates, and climate.

Bottom Line
A safe, general guideline for athletes and water intake would be to consume 1/2 gallon of additional water on non-training days. When it comes to training days, an athlete may require a gallon or more of water per day to maintain adequate hydration levels.

Source:

Kleiner, S., Water: An essential but overlooked nutrient. Journal of the American Dietetics Association. Volume 99, Number 2, 200-206, 1999.