Accessibility Tools

Skip to main content

GP Client Testimonial

I have been lifting ever since high school and have been all over the fitness spectrum since then.  In high school it was a simple program 3 sets of 10 for everything.  The programming didn't change much in college.  My results with this left me bulky and with stagnant numbers.  My bench, squat, deadlift max outs never changed no matter how hard I pushed myself with this programming.  So then I decided to leave the strength world and try high intensity interval training or HIIT. I read tons of articles, Internet blogs, etc. for workout ideas.

Fast forward after 5 years of HIIT, 6 days a week, an average workout time of 50 minutes, and the result was a 6’2”, 160 pound weakling with 3% body fat (measured by 7 point pinch test).  I found myself having to force myself to go to the gym. Every workout left me gasping for air and not enjoying it. I was extremely fatigued throughout the day and had difficulty concentrating. When you’re in a Doctorate program, you need all the concentration you can get. I didn't know where to turn because I had scoured the Internet and couldn't figure out how to program. I kept operating on the idea that "more training with higher intensity is better and who needs a deload week".

One day I had enough and set my goal: to get as strong as I possibly can. I heard about GP's training approach, so I went to talk to them to see what they had to offer. If you have read as much as I have on fitness blogs and articles, it is easy to separate those who know what they are talking about from those who don't. After talking with them and even seeing their own performance in the gym, I knew that GP was absolutely the place to turn to.

For the reader who wants to know the results I gained in 2 cycles (24 weeks):

  • Deadlift -  went from 425 to 530
  • Push Press - went from 165 to 270
  • Front squat - went from 175 to 350 (and yes I sat on my heels)
I did this at 235 pounds with 13% body fat (+ 2% for user error).  I also made these gains after 5 years of my own piss-poor programming, i.e. HIIT, which left me with nothing more than diagnosed adrenal fatigue. If that doesn't mean anything to you, Google "adrenal fatigue" and read how hard it is to make gains in the gym or even operate on a functional level throughout the day. For those readers who have been searching for great programming but don’t know where to turn, here you go.

Throughout my cycles I could email them at any time with questions, concerns, or feedback. My workouts were changed based on how my performance was in the gym the week prior. I was excited to go to the gym to see how much I could lift that day.  The new programming translated into better focus at school too. My gains were nothing like they had been before and I absolutely recommend GP's programming to everyone.

- Jared

2 Common Misconceptions In Endurance Training

What you need to know:

  • Many endurance athletes have exhausted their means of improvement with traditional training.
  • Training deficiencies, such as strength, can take your endurance capacity to new levels.
The Problem with Tradition
Similar to any group of competitive athletes, endurance athletes carry their own 'traditional' concepts when it comes to training and program design. Whether they are runners, bikers, swimmers, triathletes, or any combination in between, anyone new to an endurance sport realizes they must improve their aerobic capacity to sustain a specific pace over a specific distance. In order to do this, many people simply take to road and log mile after mile after mile.

After all, this is the accepted way of doing things, right? As a runner, if I have the goal to run a half marathon and I can only run 5 miles, obviously I need to put my time in to improve my running. But, what happens when simply just running or just biking fail to provide you the results you want? For many, this means they decide to start doing more. They think, "I must not be doing enough, so I must do more to improve."

In the endurance community, this type of thinking is the essence of traditional training. But is this training efficient in producing results? Are you wasting your time? What if the reason for your plateau in progress is not your lack of running/biking/endurance, but rather a deficiency, such as strength, that you may not have considered?

Approach enough endurance athletes about strength training and you will hear a lot of myths and misconceptions. However, talk to some of the best endurance athletes in the world and they will acknowledge the benefit strength training has in their performance. With that in mind, let's look at two of the most popular misconceptions.

Misconception #1 - Strength Training is Not Useful
This myth continues to stand the test of time despite the evidence that strength training is beneficial to athletes, regardless of sport. Even to this day, there are endurance sport experts that debate back and forth on whether or not endurance athletes need to lift weights.

Seriously? This is still happening even when we know strength training is a necessity for optimizing sport performance and health? Of special importance to endurance athletes, strength training has been shown to:
  • Maintain and/or promote the building of muscle mass. This is a huge benefit because endurance training negatively impacts muscle mass, meaning many athletes lose precious muscle.
  • Strengthen the endocrine and immune systems. Yet another big plus since chronic endurance training has a negative impact on both these systems.
  • Promote adequate bone density. The importance of this should speak for itself, but this will be of special importance to runners when you consider the risk of stress fracture.
When you take all that into consideration as well as the ability that strength training has to correct imbalances in the body and promote neuromuscular coordination, strength training should be an essential component to your training program.

Misconception #2 - Avoid Heavy Weights and Low Reps
Now that you have considered resistance training as part of your endurance routine, the next misconception to deal with is exactly how an endurance athlete should go about lifting weights. This misconception has its roots in the belief that endurance athletes need to perform high-repetition sets, usually 15-20 or more reps. The idea being high-reps will build muscle endurance, which will have the best carry over to their endurance sport. Again, this may work in the beginning, but as an athlete becomes more experienced and improves, training must adapt accordingly.

Keep in mind that many endurance athletes have exhausted their improvement with traditional training. The key to improvement now becomes identifying any deficiency. For endurance athletes deficient in strength related pathways, they can benefit from maximal strength training. Training for maximal strength requires specialized programming and relies on lifting heavy weights explosively for lower amounts of total reps.

To illustrate this concept, here is an example of a triathlete who utilized maximal strength training in her program with very successful results.

Case Study:
  • Triathlete trained is one of the head researchers for PowerBar, has a PhD in nutrition.
  • 8-10 lifts were performed per month in the 90-95% range of her 1RM (rep max)
  • Special exercises performed were box squats, special deadlifts, good mornings, and a similar variety of pressing movements for upper body.
  • No high repetition work was performed to avoid soreness and a high degree of effect on her traditional triathlon training.  Also, very little time is spent training in this manner.
  • She was amazed at the results this training was giving her. She said that she “could now look at any hill, use muscles she never had, and was able to dig deeper than ever before, and have a posture that was solid as stone,” which made her much less fatigued at the end of the run. She had shaved 1/2 hour off of her Iron man, and did about 4 hours less work per week of traditional training.  She had gained 2lbs of weight from the beginning as she trained this way for 8 months. Her bodyfat went down about 2%, and she no longer had back pain, neck pain, and less nagging training injuries and setbacks.
Importance of Maximal Strength to the Endurance Athlete
What’s the importance of maximal strength to the endurance athlete?  Let's consider two athletes, athlete A and athlete B.  They are both seasoned runners, but athlete A becomes much stronger, relatively speaking, while athlete B stays the same in strength.  Keeping body weight constant, it will take less effort for the stronger athlete to perform the same amount of work.  This increases endurance through strength conservation.

Clearly, the programming of specialized strength training can be beneficial. Also consider that the athlete in the case study above did almost 4 hours LESS training per week. This concept is known as training economy. Training economy is about achieving the greatest sport result with the less amount of time and energy spent in training. Thomas Kurz said it best in his book, Science of Sport Training:
"Training is efficient if the highest sport result is achieved with the least expense of time and energy".
To highlight this concept even further, research performed in Finland at the Research Institute for Olympic Sports found that replacing almost 1/3 of regular endurance training with explosive strength training not only improved strength and speed tests, but also improved aerobic capacity and running economy.

Take a moment to consider how much of your endurance training is unnecessary and whether your time may be better spent on training your deficiencies.

Final Words
The purpose of this article was to provide some insight into the importance of considering alternatives to traditional endurance training. Integrating resistance training to built specialized strength will only compliment your endurance capacity and provide you with a more efficient training program. To become a complete endurance athlete, addressing deficiencies appropriately can be the difference between a season of frustration and one of personal bests.

 


 

Stay Hydrated: How Much Water Do You Need?

What you need to know:

  • Adequate water intake or hydration is determined by many factors.
  • Common advice such as "Drink 8 cups of water a day" or "Drink half your body weight in ounces" are far too simplistic and may not provide you with the water you need.
Why Water is Essential to Health and Performance
"Dehydration of as little as 2% loss of body weight results in impaired physiological and performance responses."
As your body's principal chemical component, water makes up roughly 60 percent of your total body weight. Every system and cell in your body depends on water. Water is essential to normal human function.

Lack of water leads to dehydration, a state that occurs when you don't have enough water to allow your body to perform normal functions. A review published in the Journal of the American Dietetics Association states that "Dehydration of as little as 2% loss of body weight results in impaired physiological and performance responses."

To put that into perspective, this would equate to losing almost 3lbs of water for an individual who weighs 150lbs. That may seem like a lot of water to lose, assuming that one must exercise a lot or resort to extreme measures to lose that much water. But let's take a closer look and see just how easy it is to lose water without exercising.

According to the Guyton Textbook of Medical Physiology, the same 150lb individual will lose about 2.3L of water daily from urine, feces, sweat, and insensible water loss through the skin and breathing. 2.3L equals almost 5lbs of water loss per day from normal body function. This estimation does not factor in a warmer climate. Naturally, sweat rates increase in warmer weather, so this same individual could lose up to 3.3L of water a day.

It should be clear that becoming dehydrated is not a difficult task. There is a common misconception that dehydration only occurs in people that sweat a lot due to exercise or warmer weather. This couldn't be further from the truth. Normal bodily functions can lead to dehydration if water intake is not addressed appropriately.

The importance of adequate water intake has important health considerations as well. There are studies that have demonstrated individuals who stay well hydrated are less likely to experience:
  • Cancers of the breast, colon, and urinary tract
  • Urinary stone disease
  • Mitral valve prolapse
  • Childhood and adolescent obesity
Meeting Your Basic Daily Needs
In sedentary individuals, it appears that men require about 12 cups of water per day and women require about 9 cups of water per day. Whole foods are estimated to provide 4 cups of that daily water total. Another 1 cup of that daily water recommendation comes from 'metabolic water' or water that your body makes from metabolic processes, thus making this water you don't have to worry about consuming.

So for the sedentary individual, they will require about 7 cups of water/fluid per day since the remaining 5 cups of water will come from food and normal metabolic function. This is assuming that one is eating enough to meet their calorie needs.

It's important that any fluid you count toward your daily total is non-caffeinated or non-alcoholic. Caffeine and alcohol raise water needs in the body. If you consume either of these, you will need more water.

Water Needs in Response to Physical Activity
As for athletes, there is strong evidence in the research showing that dehydration will have major impacts on endurance, strength, intensity, and mood. When it comes to athletes, little research has been done to determine exactly how much water intake is needed to prevent dehydration. This likely explains the wide variety of answers one can potentially be given when attempting to figure out how much water they need to rehydrate. The honest answer is, "It depends." The reality is, there are a number of factors that play into understanding how much fluid intake an athletes needs to appropriately rehydrate.

Athletes or active individuals will generally require greater amounts of water due to increased muscle mass, metabolic activity, and sweat rates. So how much water will an athlete require? For starters, we can make a safe assumption that athletes eat more food during the day than the average person and that they have a higher metabolic rate. With this in mind, they will be getting more water from food sources and metabolic function. Depending on the climate an athlete exercises in, daily water intake may need to increase to an additional 2-4L (8-16 cups) on training days. Water intake must be based on factors such as activity level, body mass, sweat rates, and climate.

Bottom Line
A safe, general guideline for athletes and water intake would be to consume 1/2 gallon of additional water on non-training days. When it comes to training days, an athlete may require a gallon or more of water per day to maintain adequate hydration levels.

Source:

Kleiner, S., Water: An essential but overlooked nutrient. Journal of the American Dietetics Association. Volume 99, Number 2, 200-206, 1999.
 
 

Athletic Development: Will Your Child be a Success or Burn Out?

What you need to know:

• Long term athlete development is a process that occurs over many years. This is not an "8 week program". Rather, it starts at an early age and continues on into adulthood. It is not simply a linear process, but is one that must be highly individualized to assist the athlete in reaching their full potential.
• The greatest challenge to coaches, parents, and athletes is the understanding of how difficult this process is. Athletes are dealing with massive changes in physical attributes, brain function, and sport skill acquisition. These all must be managed simultaneously while stressing the concepts of hard work in a positive environment.
The Case for Long-Term Development
When it comes to athletics, critical development begins at a very early age. As children mature, they progress through important developmental stages during their growth and maturation process. If long-term athletic development is of any importance to the coach, parent, or athlete, certain aspects of these stages must be addressed at appropriate time periods, otherwise the chances of the athlete reaching elite status is reduced.

Similar to other facilities and organizations that place importance on long term athlete development, the model used at Gallagher Performance began with a review of research and methods utilized in child and athletic development around the world. Through the review of current and past research/methods used with elite athletes and even military special operations, it was concluded that to truly address athlete development, a new way of looking at how to properly structure "strength and conditioning" programs must be considered.

Long-term athlete development models are being utilized around the world by more than 100 national sport organizations. For example, within the sport of hockey, there is no doubt that countries like the Czech Republic, Finland, and Sweden produce numerous NHL players. The numbers becoming even more impressive when considering the population of these countries. Each of those countries has placed the primary focus on long-term athlete development models.

Early Specialization in Sports: It's Not Working
Early specialization in sport is becoming increasingly more common among children in the United States. The rationale behind such a decision typically being if a child plays one sport, year round, they will be more advanced than their peers, more likely to be the 'star', get recruited, and/or possibly go on to make millions. Is this all fact or just wishful thinking?

Recent research from UCLA reveals that early specialization in sport has very poor connection with young athletes achieving elite status. A survey of almost 300 NCAA Division I athletes found that 88% played two or three sports as children and 70% did not specialize in one sport until after the age of 12. These findings were already understood in former East Germany and USSR within their youth development programs.

Studies in East Germany and the USSR found that children who went through an early specialization program did have more immediate improvement in their performances. But these children also had their best performances between the ages of 15-16, had greater inconsistencies, many quit or 'burnt out' by the age 18, and they had greater rate of injuries because of forced adaptation compared to children who played multiple sports and specialized later in life.

Now coaches are beginning to recognize the negative impact early specialization has on athletes. Brent Sutter, former NHL player and head coach/GM for the WHL's Red Deer Rebels had this to say about players who focus on hockey 10-12 months out of the year:

“You just don’t have as many players today that are as good athletes as they used to be. Too much today, especially in young players, is focused on hockey 12 months a year ... You really notice the guys who are true athletes and the ones who are not. The ones you can take and play baseball or soccer with them and they get it. This is noticeable even at the NHL level. The true athletes are a little bit further ahead ... I want our scouts to look at athletes not just strictly hockey players."
This is not just a hockey issue. Arguably, the same can be said for athletes in any sport.

Conclusion
Long-term athlete development serves as a framework for athlete development in sports. It is a system that integrates age-appropriate training and recovery programming with competition while maintaining one consistent goal: the development of athletes.

At GP, we take an educated and unique approach to proper youth development in sports, focusing on a wide variety of motor, coordination, and other developmental skills. Athletic development is a process and certainly not one that should be rushed. Don't just take our word for it. Sports science and coaching experts around the globe are endorsing this model and implementing it to ensure the best outcomes for their young athletes.

 

Dietary Fat Is Not the Bad Guy

Despite what you may have been told, fat isn’t always the bad guy in the "Battle against the Bulge". Healthy fats such as monounsaturated fats, omega-3s fatty acids, and saturated fats - yes, you read that correctly - all can play a huge role in improving your health, memory, mood, and body composition. Let's take a look.

#1 - Better Health
The human body is about 97% saturated and monounsaturated fat, leaving the remaining 3 % to polyunsaturated fats. Half of that three percent is omega-3 fats, and that balance needs to be maintained. Vegetable oils contain very high levels of polyunsaturated fats, and these oils have replaced many of the saturated fats in our diets since the 1950s.

The body is in a constant state of rebuilding cells and producing hormones, two processes in which fats have a very important role. Regardless of what we consume through our diets, our bodies use the building blocks we give it. When we give it a high concentration of polyunsaturated fats instead of the ratios it needs, it has no choice but to incorporate these fats into our cells during cell repair and creation.

The problem is that polyunsaturated fats are highly unstable and oxidize easily in the body. In fact, they oxidize and become unstable during food processing and even light exposure while sitting in the grocery store. The oxidation of fat creates inflammation and mutation in cells. Inflammation has widespread affects on health and immune function. Inflammation is associated with conditions such as arthritis, asthma, and allergies and is now being identified as a key component in chronic diseases ranging from cardiovascular disease to diabetes to cancer.

Saturated fat is not the enemy. As a matter of fact, saturated fat is essential to optimal health and taking it out of your diet is a disaster waiting to happen.

#2 - Improve Memory, Enhance Mood
If you think fat only affects how you look, you’re in for a surprise. Studies are now demonstrating that staying mentally sharp and maintaing a balanced mood may be largely related to the type of fat you eat. Over the past decade, research continues to link omega-3 fatty acids to benefits ranging from better blood flow to improved mood and memory function.

The brain is 60% fat and thrives on smooth signaling between nerve cells — and the body refreshes these connections with a new supply of fatty acids. In a study published in Neurology, researchers found that those who ate fish regularly scored higher on a battery of tests for memory, psychomotor speed, cognitive flexibility and overall cognition. Furthermore, the researchers claimed that consuming EPA and DHA, fatty acids found in fish and fish oil, specifically contributed to the boost in brainpower. DHA has also been linked to decreasing the risk of Alzheimer's disease as well as overall cognitive decline.

When it comes to mood, studies show omega-3s can improve your mood. Research shows omega-3 fatty acids help nerve cells communicate better. This means feel-good brain chemicals like serotonin and dopamine can get in and out of cells more easily, translating into a better mood. Researchers from the National Institutes of Health report that omega-3 fatty acids are as effective at treating major depressive illness as commonly prescribed antidepressant drugs.

#3 - Less Body Fat, Leaner Physique
Consuming "good" fats can improve body composition and make you leaner. This comes as a surprise to many people because fat contains a lot of calories and is more calorie dense than carbohydrates and proteins. But not all fats have the same effect on the body.

Studies show that the body processes specific types of fat very differently. Essential fatty acids (EFAs), such as omega-3s, are not stored in the body. They are used to rebuild cells and make hormones, resulting in an energy expenditure increase in the body. This means that your body will burn more calories. This effect isn't limit to just EFAs either. When consumed in appropriate amounts, monounsaturated fats such as avocado and nuts do not appear to elevate body fat levels and help support hormone production. Saturated fat sources that are rich in medium-chain triglycerides (MCTs), such as virgin coconut oil and grass-fed butter, don't get stored as fat either and promote optimal body composition.

If you would like more detailed information on how fats can help you achieve your health or fitness goals, please contact us at This email address is being protected from spambots. You need JavaScript enabled to view it..

 

The Truth About Functional Exercise

Functional exercise/Functional fitness is one of the more popular trends in the fitness industry today. It seems commerical gyms are offering classes and personal trainers are claiming to be functional exercise 'gurus' in greater numbers by the day. One does not have to spend much time on the worldwide internet to find thousands of articles devoted to functional fitness.

Regardless of the exercise, the majority of these functional exercise 'experts' attempt to combine a variety of movements into one exercise or challenge your balance/coordination. They make the claim these exercises improve your ability to perform activities of daily living (ADL) and/or improve athletic performance.

Fact: There is a dramatic difference between what is being advertised by 'experts' as functional exercise and the true principle behind functional exercise.

All exercise can be 'functional', if applied correctly to address the needs of the individual. This takes into account their goals, primary sport form, strengthens/weakness, and imbalances that need correction. If your exercise has no direct transfer into any of these areas, the exercise is not 'functional'. Functional exercise should never be determined by how it looks, but rather what it produces.

GP Athlete Spotlight: Christian Wilson

Christian Wilson (Monroeville, PA) currently is a forward for the Pittsburgh Selects AAA hockey team. Christian is a highly skilled forward with lots of potential to take his game to the next level. His work ethic is tremendous, making Christian a delight to train.

Christian's programming has focused on putting quality size to his frame while improving his lower body power, speed, and quickness. With improvements made thus far, he is already catching the eye of his coaches. Hard work and smart programming pay off.

Welcome to GP, Christian!

GP Athlete Spotlight: Todd Summers

Todd Summers (Murrsyville, PA) will be a sophomore at Franklin Regional this fall. At 6'3" and 181 lbs, Todd is a power forward for the FRHS varsity basketball team and also plays AAU ball for the Pittsburgh Pressure and BSA.

GP is aiding Todd in his preparation for the upcoming basketball season. His program has focused on improving lower body strength/power development while adding size to his frame. Todd has a tremendous work ethic and with his vastly improved physical abilities, he is on the path for long-term success.

Welcome to GP, Todd!

Have You Mastered Your Movement?

This article was originally published for MPG New England. It has been republished here with permission.

 "The word ‘athlete/athleticism’ is used too loosely amidst the sporting community. It is one thing to participate in a sport and it is another thing entirely to be an athlete."

-James Smith
Athletic development is a long-term pursuit. The organization and implementation of sport training programs can pose many challenges.  Programs should never be a simple concept of various exercises for a given number of sets and reps combined with exhaustive conditioning sessions if individualization in the process of long-term athletic development is of any importance to the coach and athlete.  Athletic development is a process in the mastery of several components. One component of athletic development that is often overlooked (or ignored) by many coaches is proper mechanics as they relate to the acquisition of sport skill. Or in its simplest sense, the concept of movement efficiency. This is especially evident in youth sports, arguably when the instruction and learning of proper mechanics matters most to an athlete.

The training of fundamental athletic qualities should start early in life. These athletic qualities have been described as coordination, mobility, balance, rhythm, relaxation, timing, and kinesthetic sense (awareness of one’s body in space).  It is these qualities or biomotor abilities that separate a true athlete from someone who simply participates in a sport. James Smith wrote, “The word ‘athlete/athleticism’ is used too loosely amidst the sporting community. It is one thing to participate in a sport and it is another thing entirely to be an athlete.”

We all can appreciate this concept. Be it a youth soccer game or an international track and field event, we have seen the ‘superior athletes’. The highest-level athletes standout by their ability to make complex sport movements look effortless due to their high degree of mastery. They simply make things look easy because they have learned to move efficiently.

Whether it is the ability to sprint, jump or throw, several athletes participating within a high level of sport do not demonstrate efficient mechanics. Let’s consider sprinting. Yes, the ability to generate high levels of power and ground reaction forces will allow an athlete to move fast, but speed potential cannot be realized until efficiency of movement is mastered. This often requires the eye of a coach/specialist who understands biomechanics as it relates to sprinting and the ability to instruct what is necessary to the athlete.

The concept of teaching ideal or efficient movement should take priority before increased training loads or demands are implemented. This holds true for sprinting as well as any sport skill or weight room movement. The more a movement or sport skill is practiced at increasing velocities or against greater loads, the more concrete that exact movement pattern becomes programmed at the neuromuscular level.  Meaning that that athletes who perform a specified movement without regard for proper mechanical efficiency only get better at moving inefficiently. This becomes detrimental to their long-term potential as an athlete and elevates their risk of injury. It is the proper mechanical instruction of the sport skill(s) combined with proper management of training load variables that becomes vital in setting the stage for athletic development.

Don't Fall for the Speed Training Trap

 

Driven by Business
Speed, Agility, Quickness (SAQ) training has a unique ability to draw larger amounts of young athletes with promises of becoming a faster, more agile version of themselves. These facilities or individual coaches commonly use methods such as high speed treadmills and ladder drills. The SAQ system is terrific for business because they appear to provide athletes with what they need. However, these systems often fail to produce sustainable, long-term adaptations to improve speed.

When you consider what true speed development is all about, you begin to see why these methods do not work. And even why they may carry a high injury risk with them. Sure these methods will work for some athletes, but they are typically athletes that are already slow. Does this justify using less efficient means? Let's take a look.

# 1 -  High Speed Treadmills
The mechanics needed for ground based speed are entirely different from the mechanics utilized on a treadmill. On a treadmill, the surface moves underneath you whereas on land, you must move over the surface. Training on a treadmill does nothing to develop an athlete's acceleration or drive phase, arguably the most important element of speed in sports. High speed treadmill training becomes about who can pick up their feet and put them down the fastest instead of how much force is being applied to the ground. Furthermore, at high speeds it becomes easy for form to breakdown and ingrain poor mechanics.

#2 - Ladder Drills for Foot Quickness
Ladder drills simply make you good at ladder drills. There is no correlation to actual speed development and developing one's ability to have 'quick feet'. Any benefit to speed can be negated by teaching athletes to chop or shorten their strides. These drills are best suited for a dynamic warmup, but if you think you are going to develop Robert Griffin III agility you are only fooling yourself. Agility is developed from improving relative strength and the practice of sport skills.

How True Speed is Developed
The science behind the world's fastest man, Usian Bolt, gives insight into what true speed development is all about. More important than how fast an athlete moves their legs is the power in their stride. An average runner's stride applies about 250kg (550 lbs) of force to the ground in roughly 0.12 seconds of contact. Bolt's stride applies over 1000 lbs of force to the ground in roughly 0.08 seconds of contact. That's a significant difference. High speed treadmills and ladder drills will not develop high level speed because they ultimately fail to train the physical abilities that enable an athlete to realize their true speed potential.

Speed and acceleration should be train through proper technique instruction and developing power-speed qualities such as limit/maximal strength, explosive strength, ground reactive forces, and rate of force production. These abilities train athletes to develop high amounts of force in a brief amount of time, developing the power that enables them to accelerate quickly and achieve top end speed faster.

The process of speed development must also take into consideration the concepts of Long-Term Athlete Development (LTAD).  Young athletes, both male and female, have unique time periods during which their speed development is very sensitive. These "windows of optimal trainability" must be capitalized on or else the athlete's true speed potential will never be realized. For the vast majority of youth athletes, they miss these windows of opportunity because of over-competition and under-training that is often seen during the ages of 8-13.

Final Thoughts
As with any physical quality, the critical periods for speed development will vary between each child due to his or her genetic makeup. Each critical period respects the stages of human growth and maturation as scientific evidence demonstrates that children vary considerably in their rate of response to different training stimuli. Some children may show potential for speed at age 10, while others may not display the same potential until years later. Consequently, a long-term approach to speed development is needed to ensure that athletes who respond slowly to training stimuli are not ‘shortchanged’ in their development.

This is why a knowledgable coach who understands LTAD models and is skilled in recognizing "windows of optimal trainability" for speed, strength, stamina, suppleness (flexibility), and skill development should be sought out. If the the trainer or coach who is responsible for training your child does not understand LTAD models, I would think critically about the services you are paying for.

Not All Trainers Are Created Equal

The best performance coaches and trainers will always perform thorough and complete assessments before working with a new client. Assessments establish the foundation for success.

On the training side, this means your trainer takes you through movement screening, baseline performance tests, and takes time to understand your injury history. On the nutrition side, this means taking time to evaluate and understand a client’s current dietary habits and other variables such as their work/school schedule, primary objectives, food sensitivities, level of social support, willingness to change, and many more.

With that in mind, is this how the majority of trainers and even nutritionists go about their job? No.

Most coaches/trainers seriously lack detail in their assessments. We hear this all the time at GP during our initial assessments, even from clients who have used a number of trainers in the past. The level of detail and depth of evaluation raises curiosity and they ask, "Why has no one spent the time to do this before?"

This is a huge mistake. Quality assessments are the key to gaining real insight into what a client needs and form the ability to make critical coaching decisions. This is the point at which training ceases to be a science and becomes an art.

If you’re not put through comprehensive training or nutrition assessments before your first session, know that you deserve better than that.

Training Tip: Improve Your Conditioning



Charlie Francis was famous for the High/Low model developed for his track athletes. But that doesn't mean the concepts only apply to track athletes. This approach when effectively applied to athletes of any sport will produce tremendous results. The key principle of the system is to separate your training into high and low intensity days, with a minimum of 48 hours between High intensity days. This allows for the body to perform at its peak on a more consistent basis by providing the necessary recovery between high intensity training sessions.

How are High/Low days defined or structured?

High intensity days will include any activity that produces high levels of metabolic or nervous system stress. Examples would be explosive sprints/jumps/throws, explosive strength exercises, and high-intensity interval training to name a few. On those days, overall volume of exercise is kept to a moderate level. Low intensity days are designed to keep workout intensity at a moderate level while allowing your body a chance to recover fully. The low days are a great time to include technique work, sport specific drills, and aerobic capacity development drills such as tempo runs.

Interval/Sprint Training vs. Cardio: Which is Better for Fat Loss and Physique Development?

1. Sprint exercise resulted in 3 times more fat loss while expending 1/2 the calories compared to those who performed aerobic exercise. (Tremblay)

2. Low intensity aerobic exercise participants lost lean body mass. Over the long term, reduced lean body mass results in a lower resting metabolic rate and thus reduces the ability to burn fat. (Mouglos)

3. One study found that the addition of 4 hours of aerobic exercise per week had no effect on weight loss, while another found performing 45 mins of aerobic exercise 5 days per week for 12 weeks had no effect over dieting alone. (Van Date, Utter)

4. Twenty minutes of interval/sprint training, 3 times per week for 15 weeks led to greater fat loss compared to steady state aerobic exercise. (Trapp and Boutcher)

So is cardio pointless? Even thought it pales in comparison to other modes of exercise in the ability to burn fat, cardio is still effective. However, cardio should not be done alone as one's only form of exercise. Cardio is effective in promoting CNS recovery from intensive exercise and should be a small part of an exercise program that includes proper eating, muscle-building resistance training, and fat-burning intervals.

GP Athlete Spotlight: Charan Singh

Charan Singh recently completed a 12-week strength development block under the direction of Head Performance Coach Ryan Gallagher. The program primarily emphasized max strength development while attention was given to explosive strength conversion and position specific conditioning for football. Recovery/regeneration strategies along with his nutrition were tailored to Charan and his needs from week to week. Below is a video which highlights Charan's results from appropriate programming, and his shear hard work and determination.

Charan Singh Training Video
Tribune Review Article 

Training Hard vs Training Smart


"People are incredibly innovative in their efforts to screw up training."

- Charlie Francis, Canadian Speed Coach

When it comes to sport training and many training systems, there are aspects that are poorly managed or misused in their application. One that is very common is the lack of understanding of physiology as it relates to bioenergetic training parameters and workload compatibility in sport.

Programs and coaches may frequently implement high lactate training loads into their program for a variety of reasons. Exhaustive shuttle runs, suicides, gassers, extended sets, and 'circuit' style workouts are all examples of lactic training. The problem is even though they may be performed with perceived 'maximal effort', in order to accomplish the prescribed work, individuals are training at a medium intensity. This level of intensity is too slow to develop speed. They teach muscles to behave slowly. Furthermore, the recovery requirements are high and thus cut into the ability to perform more intensive work that would directly improve speed and explosive strength.

There is not much justification for the frequent use of lactic training loads when the nature of most field/court based sports is alactic/aerobic with varying degrees of lactate influence. This is illustrated by the influence of bioenergetics on mitochondrial concentration in skeletal muscle. Mitochondria are responsible for energy production and oxidative potential. More mitochondria means greater energy supply and faster recovery. Mitochondrial concentration is elevated in skeletal muscle by anaerobic-alactic and aerobic training, while anaerobic-lactic training results in their destruction. Lactate threshold training must be appropriately prescribed and closely monitored.

This is just one example of why training loads and parameters must have compatibility to ensure the greatest transfer into sport performance improvement. The sports training world has fallen victim to a number of gimmicks in the name of profitability. Gimmicks such as high speed or anti-gravity treadmills, ladder drills, and exhaustive circuit-based training are examples of training that has very little to no carry over into athletic performance. Read more about this here.

For athletes and individuals who take their training and health seriously, your results are too important for someone to 'screw it up'.

Understanding the Role of Olympic Lifts in Training

The Olympic lifts (snatch, clean and jerk) and their variations are often used in the training and preparation of athletes that require explosive strength and power. Although Olympic lifts may be useful for teaching an athlete of low preparation how to rapidly generate force, overall they are not ideal for developing explosive strength for a number of reasons. Of primary importance is the increased risk of orthopedic injury associated with Olympic lifts, namely the overhead portions. So how does one efficiently develop power and explosive strength without undue risk of injury?

If the end goal is to improve explosive strength of the leg and hip musculature, as measured through vertical jump and standing long jump, coaches must select the most efficient and safest means. Charlie Francis placed sprints, jumps, and throws just as high as the Olympic lifts on his motor unit recruitment chart. Sprints, med ball throws, weighted/unweighted jumps all become wiser alternatives for power development as they require far less time to learn and impose less risk of injury.

This is not to say Olympic lifts serve no purpose. They certainly can be useful, but their positive effects are greatly misinterpreted by most coaches. For instance, some coaches utilize various volume and intensity schemes with the Olympic lifts to develop bioenergetic pathways used in acceleration phase of sprinting. Others will use it to develop tremendous starting strength. Keep in mind, there have been Olympic-level weightlifters with remarkable vertical jumps. Some have the ability to keep pace with or beat Olympic-level sprinters in the first 30m out of the blocks.

This sounds like pretty amazing stuff, right? Simply hit some cleans and snatches to get powerful and fast?

However, there's a big problem.

You aren’t as good at the lifts as an Olympic-level weightlifter. Remember, weightlifting is a sport. It is a skill and unless you have a lot of years under your belt, perfecting the lifts, you aren’t even remotely close to having the lifts make a significant impact on your athletic performance.

If you are going to get the most out of training the Olympic lifts, it absolutely matters that you are skilled from a technical viewpoint.

For example, outside of elite status Olympic weightlifters, very few lifters actually achieve full hip extension during the lifts. Meaning, they aren't fully developing powerful hip extension. Full, powerful hip extension is essential to developing explosive athletic qualities seen in sprinting, jumping, and throwing.

So, as an athlete, why would you perform a series of exercises that are ultimately going to take years of practice to learn while reaping little benefit from that effort? Sure, plenty of people think they have "learned" the lifts, but reality is they are far off the mark.

It takes time, a lot of time, to learn how to do the lifts properly. Achieving rapid, full hip extension is not an easy task and don't let anyone convince you otherwise. Nobody ever mastered the lifts in a matter of weeks.

So when it comes down to appropriately addressing power-speed development in athletes, it should become clear that there is potentially wasted time and energy in truly learning the Olympic lifts. Similar training results can be achieved with more basic exercises without the high technical demands.

Looking for ways to develop powerful hip extensions? Variations of sprints, jumps, and med ball throws get the job done faster with greater dynamic correspondence. Unless you are competing in weightlifting, the Olympic lifts don't offer much in dynamic correspondence to many athletes. Consider movements specific to your sport. Whether it is skating or shooting in hockey, throwing a baseball, covering a wide receiver, or kicking a soccer ball, there are very few specific connections with the Olympics lifts when you look at the movement patterns.

For an athlete, the Olympic lifts become very general in their ability to train resisted hip extension and reactivity.

As an athlete, your goal is to get better at your sport. Specificity in training matters. You could be wasting valuable time and energy resources on learning lifts that have little impact on your abilities to perform in competition.

Concluding Thoughts
I’m not here to bash on the Olympic lifts. They can serve a purpose in developing explosive hip extension and reactive/plyometric qualities. However, there are problems that exist with their use and implementation in the training programs of athletes. As mentioned previously, outside of competitive weightlifters, the Olympic lifts lack specificity. Specificity and dynamic correspondence are critical for any athlete. The Olympics lifts also impose greater structural risk and this could be considered unnecessary when developing athletes. The goal of athletic development is to maximize training results while minimizing structural risk. Consider variations of sprints, jumps, and throws. These alternatives are easier to implement and progress, thus providing both athletes and coaches the ability to master power-speed qualities specific to the athlete's sport form.

Early Specialization in Sports

Early specialization in sport is becoming increasingly more common among children. The rationale behind such a decision typically being if a child plays one sport, year round, they will be more advanced than their peers, more likely to be the 'star', get recruited, and/or possibly go on to make millions. Is this all fact or just wishful thinking?

Recent research from UCLA reveals that early specialization in sport has very poor connection with young athletes achieving elite status. A survey of almost 300 NCAA Division I athletes found that 88% played two or three sports as children and 70% did not specialize in one sport until after the age of 12. These findings were already understood in former East Germany and USSR within their youth development programs.

Studies in East Germany and the USSR found that children who went through an early specialization program did have more immediate improvement in their performances. But these children also had their best performances between the ages of 15-16, had greater inconsistencies, many quit or 'burnt out' by the age 18, and they had greater rate of injuries because of forced adaptation compared to children who played multiple sports and specialized later in life.

At GP, we take an educated and unique approach to proper youth development in sports, focusing on the development of a wide variety of motor and coordination skills. Athletic development is a process and certainly not one that should be rushed.

Drop the Confusion, Athletes Need Consistency for Efficiency



What you need to know:

  • Neural efficiency is the key to becoming a better athlete, this is known as athletic mastery.
  • Mastery requires time, intelligent programming, hard work, and dedication to consistency. 
Consistency Matters
The primary goal of any athletic and strength development program should be neural efficiency. Fact of the matter is the nervous system controls and coordinates every movement and every function in your body. The nervous system thus is the regulator of strength and movement coordination. This is why ALL successful athletes have periodization implemented into their programming. Periodization is a fancy word for structured, intelligent programming to address individual needs.

Any athlete that has reached elite status in their sport has used periodization to address their needs and to ultimately promote positive, long-term adaptations from the learning of repeated actions by the nervous system. One observation that can be made of such programs is how little they seem to change or when a change is implemented, it follows a progression based on what the athlete is displaying or what they are capable of from day-to-day, week-to-week, or month-to-month.

Don't Let Fitness Trends Confuse You
Programs and/or trainers that endorse 'muscle confusion', randomized daily workouts, or continual change to exercise without following proper programming will always fail to develop an efficient nervous system. Sure for the ADD crowd and those that get bored easily, this appeals to you. Or maybe you are that person obsessed with 'fitness' and have become convinced workouts of this manner are the Holy Grail. If you are one of these people, be my guest. That's your choice. This article is specific to athletes and those that want to see consistent, sustainable results from their hard work. Not to simply have a workout entertain them.

Randomized workouts may sound interesting, even cool. The marketing placed around these workouts will spin words and science to make them appealing to the masses. Ultimately the end result is not allowing the athlete or individual to properly adapt to their training and achieve mastery.

How can adaptation and mastery be a bad thing when you want to improve? Want to be great?

Mastery is the Goal
For many, the frustration with mastery is it requires time. A lot of time. Mastery is a long-term process. This is exactly why great coaches and great athletes stress fundamentals at any level, from 7 year olds all the way up to the professional ranks. Think about it. Coaches don't just go through random drills at practice and if they do, they likely don't last long or frankly shouldn't be coaching in the first place. Fundamentals are reinforced because the better an athlete is at the fundamentals, the greater chance of success they will have when performing more complex sport skills.

Mastery is a grind. Its prerequisites are consistency and discipline. Mastery takes years to develop and this becomes a problem when the fitness industry wants to sell a 'quick fix'. And most Americans want that 'quick fix'. They want results now, not later. They don't want to put in years of work when they see programs that advertise how they can 'get ripped in 60 days' or 'get faster in 4 weeks'.

That's a Wrap
Athletes should recognize that their goals will not be solved with today's latest fitness trend. The only way to achieve mastery is through consistent, focused effort to become efficient in all fundamentals and sport specific skills. The message should be clear. At GP, this is something we feel strongly about and want to provide you with the information needed to make the best decisions for your goals. Mastery and efficiency are critical to the athlete and we addressed the importance of that in this article.

Is your training program allowing you to develop the mastery needed to achieve your goals?

Training: As Simple as a Glass of Water?

Many coaches and so called 'strength & conditioning' coaches typically lack an understanding of bio-mechanics and physiology as it relates to sport. The athletes are the one that pay the price for this, as their preparation and performance can be negatively affected.

The program design must carefully monitor all aspects of training. Charlie Francis used a glass of water analogy to describe the delicate nature of balancing sprint/conditioning training with additional CNS intensive loading (lifting, jumping, throwing, etc) in athletic development. Fill up the glass with an abundance of one and you leave little room left for another because CNS resources are finite. What happens if you overflow the glass? The athlete ends up over-trained, performance suffers, and injury becomes more likely.

Athletic development is not a 'quick fix', rather a long-term process. GP applies expert understanding of bio-mechanics and physiology, tailoring these concepts to each client and athlete's program. We want them to understand what it takes to raise their game to the next level.